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Abstract 
Integrated Choice and Latent Variable (ICLV) models are an increasingly popular extension to discrete choice 
models that attempt explicitly to model the cognitive process underlying the formation of any choice. Though 
the ICLV model has been employed extensively by studies across a wide spectrum of disciplines, the value of 
the framework has remained unclear. On one hand, ICLV models allow for the proper integration of 
psychometric data and provide a framework with which to test the influence of latent variables, such as attitudes 
and perceptions, on observable behavior. On the other, questions have been raised regarding their value to 
econometricians, practitioners and policy-makers. This study undertakes a systematic evaluation of the 
statistical properties of the ICLV framework, and how they compare to a reduced form choice model without 
latent variables. We derive easily generalizable analytical proofs regarding the statistical benefits, or lack 
thereof, of ICLV models over choice models without latent variables and use synthetic datasets to validate any 
conclusions drawn from the analytical proofs. In terms of goodness of fit and the consistency of parameter 
estimates, we find that ICLV models do not offer improvements over reduced form choice models without 
latent variables. However, ICLV models allow for the identification of structural relationships between 
observable variables that could not be identified using choice models without latent variables, and parameter 
estimates from the ICLV model are shown to be potentially more efficient than equivalent estimates from a 
reduced form choice model without latent variables. Given the limited nature of these practical benefits, we 
argue that studies that use ICLV models need to show either that the structure imposed by the ICLV model 
results in a reduced form choice model specification that may not have been considered in the absence of latent 
variables to guide the process of model development, or that the greater insights into the decision-making 
process offered by the ICLV model can be used to inform policy and generate forecasts in unobvious ways that 
would not be possible using choice models without latent variables.  
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1. Introduction 

Traditional models of disaggregate decision-making have long ignored the question of why we want what we 
want. Human needs have been treated as given, and attention has largely centered on the expression of these 
needs in terms of behavior in the marketplace. As a consequence, traditional models of disaggregate decision-
making have focused on observable variables, such as product attributes, socioeconomic characteristics, market 
information and past experience, as determinants of choice, at the expense of the biological, psychological and 
sociological reasons underlying the formation of individual preferences (McFadden, 1986). This idealized 
representation of consumers as optimizing black boxes with predetermined wants and needs is at odds with 
findings from studies in the social sciences that have attempted explicitly to map the cognitive path that leads 
consumers from observable inputs to their observed choices in the marketplace. These studies have consistently 
shown that latent constructs such as attitudes, norms, perceptions, affects and beliefs can often override the 
influence of observable variables on disaggregate behavior (see, for example, Bamberg and Schmidt, 2001; 
Gärling et al., 2003; Anable, 2005).  

Integrated Choice and Latent Variable (ICLV) models overcome these deficiencies by allowing for the 
incorporation of latent behavioral constructs within the framework employed by traditional models of 
disaggregate decision-making. ICLV models were first proposed two-and-a-half decades ago by McFadden 
(1986) and expanded on by Ben-Akiva et al. (2002). Rapid strides in optimization techniques and computational 
power and the ready availability of estimation software such as Python Biogeme (Bierlaire, 2003) and Mplus 
(Muthén and Muthén, 2011) have since contributed to a veritable explosion in the number of studies estimating 
ICLV models. In the context of transportation and logistics, ICLV models have been applied to the study of 
travel mode choice (Paulssen et al., 2014), route choice (Prato et al., 2012), car ownership (Daziano and Bolduc, 
2013), air travel (Fleischer et al., 2012), freight (Ben-Akiva et al., 2008), etc.  

Though much progress has been made in terms of model development and estimation (see, for example, Bhat 
and Dubey, 2014 and Daziano, 2015 for recent methodological advances on the subject), existing studies have 
failed to demonstrate conclusively the value of the framework to econometricians, practitioners and policy-
makers. On one hand, ICLV models appear to be powerful methods with which to enhance existing 
representations of decision-making. They allow for the proper integration of psychometric data within extant 
model frameworks and provide statistical tools with which to test complex theories of behavior, such as the 
Theory of Interpersonal Behavior (Triandis, 1977) and the Theory of Planned Behavior (Azjen, 1991). On the 
other, questions have been raised regarding the practical benefits of the framework. Does an ICLV model fit the 
data better than a choice model without latent variables? Are parameter estimates from the ICLV model more 
efficient? Both sides of the debate have their proponents, but a clear verdict remains elusive. 

The objective of this study is to evaluate systematically the statistical properties of the ICLV model framework, 
and how they compare with a more traditional choice model without latent variables based on four criteria: 
goodness of fit with respect to the choice data, identification of structural relationships between variables, and 
the consistency and efficiency of parameter estimates. The study derives analytical proofs regarding the benefits, 
or lack thereof, of ICLV models over choice models without latent variables for each of the four criteria, and 
uses synthetic datasets to validate any conclusions drawn from the analytical proofs.  

The paper is structured as follows: Section 2 describes the ICLV model framework in greater detail; Section 3 
compares the framework with a choice model without latent variables in terms of its ability to predict outcomes 
to the choice data; Section 4 explores the usefulness of additional parameters identified by the framework; 
Sections 5 and 6 compare the consistency and efficiency of parameter estimates obtained by the two model 
forms, respectively; and Section 7 concludes the paper with a summary of key findings and a discussion of 
potential directions for future research.  
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2. The ICLV Model Framework 

Figure 1 illustrates the ICLV model framework. In the general formulation, two components can be 
distinguished: a multinomial discrete choice model and a latent variable model. Each of these sub-models 
consists of a structural and a measurement component. In the discrete choice component, the alternatives’ 
utilities may depend on both observed and latent attributes of the alternatives and characteristics of the decision 
makers. Consistent with the random utility maximization model, utility as a theoretical construct is 
operationalized by assuming that individuals choose the alternative with the greatest utility. The latent variable 
part is rather flexible in that it allows for both simultaneous relationships between the latent variables and 
MIMIC-type models where observed exogenous variables influence the latent variables. Such a specification 
enables the researcher to disentangle the direct and indirect effects of observed as well as latent variables on the 
alternatives’ utilities. The latent variables themselves are assumed to be measured by multiple indicators, such 
as responses to Likert-scale survey questions.  

Mathematically, the model may be represented using the following set of four equations: 

𝐮𝐧 = 𝐁𝐱𝐧 + 𝚪𝐱𝐧∗ + 𝛆𝐧 (1) 

𝐱𝐧∗ = 𝚨𝐱𝐧 + 𝛎𝐧 (2) 

𝐢𝐧 = 𝐃𝐱𝐧∗ + 𝛈𝐧	
   (3) 

y!" =
1    if  u!" ≥ u!"!   for  j′ ∈ 1,… , J
0    otherwise                                                                    

	
   (4) 

, where 𝐮𝐧 is the J×1  vector of utilities of each of the J alternatives, as perceived by decision-maker n, 𝐱𝐧 is 
the K×1  vector of observable explanatory variables and 𝐱𝐧∗  is the M×1  vector of latent explanatory 
variables, 𝐁  and 𝚪  are the J×K  and J×M  matrices of model parameters denoting sensitivities to the 
observable and latent variables, respectively, and 𝛆𝐧 is the J×1  vector denoting the stochastic component of 
the utility specification; 𝚨 is the M×K  matrix of model parameters denoting the structural relationship 
between the latent and observable variables, and 𝛎𝐧 is the M×1  vector denoting the stochastic component of 
that relationship; 𝐢𝐧 is the R×1  vector of indicators used to measure the latent variables, assumed without loss 
of generality to represent deviations from the mean, 𝐃 is the R×M  matrix of model parameters denoting the 
sensitivities of the measurement indicators to the latent variables, and 𝛈𝐧 is the R×1  vector denoting the 
stochastic component of the measurement equation; and y!" is the choice indicator, equal to one if decision-
maker n chose alternative j, and zero otherwise.  
 
Figure 1: The ICLV model framework (adapted from Ben-Akiva et al., 2002) 

 



5  

For the sake of notational simplicity, we’ve assumed that the alternatives faced by decision-makers are the same 
across the sample population. Though the analytical proofs derived in subsequent sections will be for this 
special case, each of the proofs can be extrapolated straightforwardly to the more general case where different 
decision-makers may be faced with different choice sets. Different distributional assumptions about each of the 
stochastic variables can lead to different forms of the ICLV model. Typically, most models in the literature 
make one of three broadly generalizable assumptions about the vector 𝛆𝐧: (1) each element of 𝛆𝐧, denoted ε!", is 
i.i.d. Gumbel across alternatives and decision-makers with location zero and scale one, resulting in a 
multinomial logit kernel for the discrete choice sub-model; (2) the vector 𝛆𝐧 is distributed normally with a mean 
vector of zeros and covariance matrix given by 𝛀𝐧, resulting in the multinomial probit kernel for the discrete 
choice sub-model; or (3) the vector 𝛆𝐧 is a mixture between normally distributed and Gumbel distributed 
vectors, resulting in the mixed logit kernel. We will be working under the first assumption, since it is the most 
popular. However, equivalent proofs can be derived quite easily under the other assumptions. Assuming that ε!" 
is i.i.d. Gumbel across alternatives and decision-makers with location zero and scale one, conditional on the 
latent variables, the probability that decision-maker n chooses alternative j may be derived from equation (4) to 
yield the following functional form: 

P y!" = 1|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 =
exp 𝛃𝐣∗𝐱𝐧 + 𝛄𝐣∗𝐱𝐧∗

exp 𝛃𝐣!∗𝐱𝐧 + 𝛄𝐣!∗𝐱𝐧∗
!
!!!!

 (5) 

, where 𝛃𝐣∗ and 𝛄𝐣∗ are the 1×K  and 1×M  vectors corresponding to the j!" rows of 𝐁 and 𝚪, respectively. 
Equation (5) may be combined iteratively over alternatives to yield the following conditional probability of 
observing the vector of choices 𝐲𝐧 for decision-maker n: 

f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 = P y!" = 1|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪
!!"

!

!!!

 (6) 

With regards to the measurement indicators, we’ve assumed that the indicators represent continuous response 
variables, as is standard practice in the literature. This need not always be the case. Findings from this study still 
hold for models with measurement indicators that may best be represented as discrete response variables, but 
extending the proofs to include these special cases isn’t necessarily straightforward. For the sake of concision, 
we have left the derivations for these cases up to the reader. In cases where the measurement indicators are 
treated as continuous response variables, the vector 𝛈𝐧 is usually assumed to be distributed normally with a 
mean vector of zeros and covariance matrix denoted by 𝚿, assumed to be invariant across decision-makers 
(though this assumption too can be relaxed without loss of generality). Under these assumptions, conditional on 
the latent variables, the probability distribution function associated with the measurement indicators may be 
formulated as follows: 

f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐃,𝚿 = 2π !!! 𝚿 !!!exp −
1
2 𝐢𝐧 − 𝐃𝐱𝐧∗ !𝚿!! 𝐢𝐧 − 𝐃𝐱𝐧∗  (7) 

, where 𝚿  denotes the determinant of 𝚿. The latent variables can be formulated as either nonparametric or 
parametric random variables. A nonparametric formulation results in a latent class choice model (LCCM) and a 
parametric formulation results in the ICLV model, the subject of this paper. Therefore, we will be limiting our 
attention to the latter case. We assume further that the latent variable can be represented using a linear in 
parameters formulation, as given by equation (2). While this is usually the case in the literature, our results hold 
under more general parametric formulations as well. When a linear in parameters formulation is used, the vector 
𝛎𝐧 is usually assumed to be distributed normally with a mean vector of zeros and covariance matrix denoted by 
𝚽, and the probability distribution function associated with the latent variables can be expressed as follows: 
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f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 = 2π !!! 𝚽 !!!exp −
1
2 𝐱𝐧∗ − 𝐀𝐱𝐧 !𝚽!! 𝐱𝐧∗ − 𝐀𝐱𝐧  (8) 

Taking advantage of the conditional independence of the choice and measurement indicators and marginalizing 
over the distribution of the latent variables, equations (6), (7) and (8) may be combined to yield the joint 
unconditional probability distribution function for the choice and measurement indicators as follows: 

f𝐲,𝐢 𝐲𝐧, 𝐢𝐧|𝐱𝐧;𝐁,𝚪,𝐃,𝚿,𝐀,𝚽 = f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐃,𝚿 f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 d𝐱𝐧∗

𝐱∗

 (9) 

Equation (9) may be combined iteratively over all decision-makers to yield the likelihood function for the 
sample population. The unknown model parameters 𝐁, 𝚪, 𝐃, 𝚿, 𝐀 and 𝚽 are estimated by maximizing the 
likelihood function for each of these parameters. Traditionally, maximum simulated likelihood estimation has 
been used to recover parameter estimates, but a number of studies in the recent past have proposed alternative 
methods for estimation (see, for example, Daziano and Bolduc, 2013 and Bhat and Dubey, 2014). Over the 
course of the subsequent sections, we examine and compare the different statistical properties of the model 
parameter estimates thus recovered. Since these different estimation methods are asymptotically equivalent, the 
results presented in this study apply regardless of whichever method is used for parameter estimation. 

3. Goodness of Fit 

The goodness of fit of a statistical model is a measure of how well the model explains observable data. For 
discrete choice models, with or without latent variables, goodness of fit is a measure of the model’s ability to 
predict outcomes to the choice indicators, usually defined as some function of the likelihood evaluated at the 
parameter estimates. In general, one would expect more complex models to fit the data better than less complex 
models. However, as we demonstrate in this section, an ICLV model can be reduced to a choice model without 
latent variables that fits the choice data at least as well as the original ICLV model framework from which it 
was obtained. Section 3.1 derives the analytical proof for our assertion; Sections 3.2, 3.3 and 3.4 validate the 
proof using synthetic datasets; and Section 3.5 summarizes key findings. 

3.1 Analytical Proof of Model Equivalence 

In order to facilitate a comparison between choice models with and without latent variables, we must 
necessarily restrict our attention to the likelihood of observing the vector of choices 𝐲, which for the ICLV 
model may be derived by marginalizing equation (9) over the vector of indicators 𝐢𝐧 as follows: 

f𝐲 𝐲𝐧|𝐱𝐧;𝐁,𝚪,𝐀,𝚽 = f𝐲,𝐢 𝐲𝐧, 𝐢𝐧|𝐱𝐧;𝐁,𝚪,𝐃,𝚿,𝐀,𝚽 d𝐢𝐧
𝐢

 

= f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐃,𝚿 f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 d𝐱𝐧∗

𝐱∗

d𝐢𝐧
𝐢

 

= f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐃,𝚿 d𝐢𝐧
𝐢

d𝐱𝐧∗

𝐱∗

 

= f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 d𝐱𝐧∗

𝐱∗

 

 

 

 

 

 

 

(10) 
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Since the likelihood function contains an integral that does not have a closed form solution, it may be 
approximated using the following simulator: 

f𝐲 𝐲𝐧|𝐱𝐧;𝐁,𝚪,𝐀,𝚽 ≈
1
T f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧𝐭∗ ;𝐁,𝚪

!

!!!

 (11) 

, where 𝐱𝐧𝐭∗  represents the t!" draw from f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽  and T is the number of draws. For more information 
on simulation methods, the reader is referred to Train (2009). The proof is quite straightforward. We begin by 
substituting equation (2), the structural equation of the latent variables, in equation (11): 

f𝐲 𝐲𝐧|𝐱𝐧;𝐁,𝚪,𝐀,𝚽 ≈
1
T f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧𝐭∗ ;𝐁,𝚪

!

!!!

 

=
1
T

exp 𝛃𝐣∗𝐱𝐧 + 𝛄𝐣∗𝐱𝐧𝐭∗

exp 𝛃𝐣!∗𝐱𝐧 + 𝛄𝐣!∗𝐱𝐧𝐭∗
!
!!!!

!!"!

!!!

!

!!!

 

=
1
T

exp 𝛃𝐣∗𝐱𝐧 + 𝛄𝐣∗ 𝚨𝐱𝐧 + 𝛎𝐧𝐭

exp 𝛃𝐣!∗𝐱𝐧 + 𝛄𝐣!∗ 𝚨𝐱𝐧 + 𝛎𝐧𝐭
!
!!!!

!!"!

!!!

!

!!!

 

=
1
T

exp 𝛃𝐣∗ + 𝛄𝐣∗𝚨 𝐱𝐧 + 𝛄𝐣∗𝛎𝐧𝐭

exp 𝛃𝐣!∗ + 𝛄𝐣!∗𝚨 𝐱𝐧 + 𝛄𝐣!∗𝛎𝐧𝐭
!
!!!!

!!"!

!!!

!

!!!

 

 

 

 

 

 

 

(12) 

, where 𝛎𝐧𝐭 is the t!" draw from N 𝟎,𝚽 . At this stage, we have eliminated the vector of latent explanatory 
variables 𝐱𝐧𝐭∗ . What we have is the simulated probability of observing the vector of choice indicators 𝐲𝐧 as a 
function solely of the vector of observable explanatory variables 𝐱𝐧. Introduce the J×K  matrix of parameters 
𝚻 = 𝐁+ 𝚪𝚨, such that the j!" row of 𝚻, 𝛕𝐣∗ = 𝛃𝐣∗ + 𝛄𝐣∗𝚨. Introduce the J×1  vector of random variables 
𝛚𝐧 = 𝚪𝛎𝐧 , distributed normally across alternatives with a mean vector of zeros and covariance matrix 
𝚭 = 𝚪𝚽𝚪!, such that 𝛚𝐧𝐭 is the t!" draw from N 𝟎,𝚭  and ω!"# is the j!" element of 𝛚𝐧𝐭. Substituting these 
new parameters in equation (12), we get: 

f𝐲 𝐲𝐧|𝐱𝐧;𝚻,𝚭 ≈
1
T

exp 𝛕𝐣∗𝐱𝐧 +ω!"#

exp 𝛕𝐣!∗𝐱𝐧 +ω!"!!
!
!!!!

!!"!

!!!

!

!!!

 (13) 

But equation (13) is simply the simulated likelihood function for a mixed logit model without latent variables 
and with the following utility specification: 

𝐮𝐧 = 𝚻𝐱𝐧 +𝛚𝐧 + 𝛆𝐧 (14) 

Therefore, for any values of the model parameter vectors  𝐁, 𝚪, 𝐀 and 𝚽 for the ICLV model, we can construct a 
mixed logit model without latent variables with parameters 𝚻 and 𝚭 that yields the same distribution of the 
dependent variable 𝐲𝐧. In deriving the proof, we have assumed that the discrete choice sub-model has a 
multinomial logit kernel. In cases where the sub-model has a mixed logit or multinomial probit kernel, the 
corresponding reduced form choice model without latent variables will be a mixed logit or multinomial probit 
model, respectively. Analogous proofs can be derived for these cases following the method described here for 
the multinomial logit kernel. 
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Figure 2: A hypothetical model of bicycle ownership 

 

3.2 Monte Carlo Experiment I 

We validate the result using synthetic data generated using a Monte Carlo experiment. A Monte Carlo 
experiment is especially useful because the true parameters underlying the data generating process are known, 
and the credibility of the analytical proof can be evaluated under a wide variety of conditions, leading to more 
generalizable results that aren’t specific to any one dataset. For the purpose of the experiment, we construct a 
hypothetical model of bicycle ownership, as illustrated in Figure 2. The utility of owning a bicycle is 
hypothesized to be some function of an individual’s age, her level of environmentalism and her susceptibility to 
peer influence. The latter two variables are assumed to be latent variables that can be measured through 
responses to, say, Likert-scale questions. For example, level of environmentalism may be measured by asking 
the individual her degree of agreement or disagreement with the statement, “If things continue on their present 
course, we will soon experience a major environmental catastrophe (Kirk, 2010).” Similarly, susceptibility to 
peer influence may be measured by asking the individual to what degree the following statement applies to her, 
“I go along with my friends just to keep them happy (Steinberg and Monahan, 2007).” Environmentalism is 
hypothesized to be a function itself of the individual’s age and gender, and susceptibility to peer influence is 
hypothesized to be a function of the individual’s age alone. The model may be summarized mathematically by 
the following set of six equations: 

u!" = β!!x!" + β!" + γ!!x!"∗ + γ!"x!"∗ + ε!",    ε!"~GEV 0,1,0  (15) 

u!" = ε!",    ε!"~GEV 0,1,0  (16) 

x!"∗ = α!!x!" + α!"x!" + α!" + ν!",    ν!"~N 0,ϕ!! 	
   (17) 

x!"∗ = α!"x!" + α!" + ν!",    ν!"~N 0,ϕ!! 	
   (18) 

i!" = x!"∗ + η!",    η!"~N 0,1 	
   (19) 

i!" = x!"∗ + η!",    η!"~N 0,1 	
   (20) 

Consistent with practices in the literature, we’ve selected a multinomial logit kernel for the discrete choice sub-
model, we’ve assumed that the covariance matrices 𝚿 and 𝚽 are diagonal matrices, and we’ve set the location 
and scale for each of the latent variables through the measurement equations. Synthetic datasets are generated  
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Figure 3: A plot of the cumulative distribution function over 100 datasets of the difference in log-likelihood at 
convergence between the ICLV model given by equations (15)-(20) and the mixed logit model given by 
equations (21) and (22) 
 

 

for the proposed model framework as follows: age (x!") is specified as an ordered categorical variable having a 
discrete uniform distribution between 0 and 5, where each number is understood to denote a particular age 
group, and the higher the number the greater the range of ages that belong to that group; and gender (x!") is 
specified as a Bernoulli random variable with mean 0.5. Following the methodology proposed by Williams and 
Ortúzar (1982) and the approach outlined by Raveau et al. (2010), values for each element of the model 
parameter matrices 𝐁, 𝚪, 𝐃, 𝚿, 𝐀 and 𝚽 are chosen such that they satisfy three conditions. First, the model 
should be theoretically identifiable. This is achieved by imposing appropriate constraints to fix the location and 
scale of each of the latent variables. Second, the part-worth utilities of each of the explanatory variables, as 
represented by the product between that variable and the corresponding parameter, should be comparable in 
terms of magnitude. If this is not the case, one of the attributes could potentially dominate the utility function, 
and it may be hard to empirically isolate the effect of other variables. And third, the scale of the model is set 
such that the error rate for the data is roughly 25%, i.e. one in four simulated decision-makers change their 
choice because of the stochastic component, thereby ensuring that the decision-making process is neither 
completely deterministic nor completely stochastic. 100 datasets each are generated for 100, 200, 500 and 1000 
pseudo-observed decision-makers hypothesized to behave according to the decision-making process described 
above, resulting in a total of 400 datasets.  

Substituting equations (17) and (18) in equations (15) and (16), we get the following form for the reduced form 
mixed logit model without latent variables: 

u!" = τ!!x!" + τ!"x!" + τ!" +ω!" + ε!",    ω!"~N 0, ζ!! ; ε!"~GEV 0,1,0  (21) 

u!" = ε!",    ε!"~GEV 0,1,0  (22) 

For each of the 400 datasets, we estimate an ICLV model with the specification given by equations (15)-(20) 
and a mixed logit model with the specification given by equations (21) and (22). All models are estimated using 
maximum simulated likelihood estimation with the software package Python Biogeme (Bierlaire, 2003). Figure 
3 plots the cumulative distribution function of the absolute difference in the value of the log-likelihood function 
at convergence between the two models for datasets with 100, 200, 500 and 1000 observations. Even though the 
data was generated according to the ICLV model specification, the mixed logit model can be seen to fit the data 
just as well. We fail to reject the hypothesis that the log-likelihood at convergence for the reduced form ML 
model is different than that for the ICLV model at a statistical significance of 10% for each of the four sets of  
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Figure 4: A plot of the cumulative distribution function over 100 datasets of the difference in log-likelihood at 
convergence between the ICLV model given by equations (15)-(20) and the sub-optimal mixed logit (ML) 
model given by equations (23) and (24) 

 

100 datasets corresponding to 100, 200, 500 and 1000 observations. Moreover, the log-likelihood at 
convergence for the reduced form ML model is within one point of the ICLV model for 98, 96, 92 and 90 of the 
100 datasets corresponding to 100, 200, 500 and 1000 observations, respectively. It isn’t identical because of 
simulation noise. Maximum simulated likelihood is consistent if the number of draws T rises faster than the 
square root of the sample size N. Since the number of draws is held constant across the datasets, simulation 
noise can be seen to increase with sample size. Therefore, we can conclude that, despite their greater complexity, 
ICLV models do not result in an improvement in fit with respect to the choice data over simpler choice models 
without latent variables.  

3.3 Monte Carlo Experiment II 

Despite the results presented in Sections 3.1 and 3.2, it isn’t hard to find studies in the literature that have 
compared ICLV models to choice models without latent variables and concluded that the former provide a 
better fit to the choice data. The erroneous conclusion can be attributed to comparisons with choice models 
without latent variables that failed additionally to include observable variables otherwise included in the ICLV 
model through the structural component of the latent variable sub-model. In the context of the hypothetical 
model of bicycle ownership presented in Section 3.2, this is equivalent to comparing the ICLV model to a 
mixed logit model that does not include age or gender as explanatory observable variables, or the random error 
term (resulting in a multinomial logit model). For example, consider the following specification for a mixed 
logit model where age has not been included as an explanatory variable: 

u!" = τ!"x!" + τ!" +ω!" + ε!",    ω!"~N 0, ζ!! ; ε!"~GEV 0,1,0  (23) 

u!" = ε!",    ε!"~GEV 0,1,0  (24) 

Figure 4 plots the cumulative distribution function of the difference in the value of the log-likelihood function at 
convergence between the ICLV model specification given by equations (15)-(20) and the mixed logit model 
given by equations (23) and (24) for the 100 datasets generated in Section 3.1 corresponding to 100 
observations each. As is apparent, the mixed logit model fits much worse than the ICLV model. In such cases, 
the improvement in fit does not result from the inclusion of latent variables to the ICLV model, but rather from 
the omission of observable variables from the choice model without latent variables.  
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Table 1: Estimation results for the ICLV model given by equations (15)-(20), the reduced form 
mixed logit model given by equations (21) and (22), and the sub-optimal mixed logit model 
given by equations (23) and (24) 

Parameter True 
value 

ICLV  Reduced form 
mixed logit  

Sub-optimal  
mixed logit 

est. p-val. est. p-val. est. p-val. 
Utility specification of recycling 

Constant  -3.00 -3.20 0.02 -0.14 0.80 -0.46 0.21 
Attitude towards environment 0.90 0.93 0.01 - - - - 
Susceptibility to peer pressure 0.70 0.84 0.06 - - - - 
Age  -0.83 -1.07 0.02 -0.12 0.44 - - 
Gender  - - - 0.99 0.06 1.02 0.05 

Structural equation of attitude towards environment 
Age  0.30 0.26 0.00 - - - - 
Gender  1.00 1.19 0.00 - - - - 

Structural equation of susceptibility to peer pressure 
Age  0.80 0.86 0.00 - - - - 

Log-likelihood of the choice model   -66.96 -66.99 -67.29 
 
Some studies have justified omission on the grounds of statistical significance: the omitted variables when 
included in the ICLV model through the structural component of the latent variable sub-model were found to be 
statistically significant, but when these same variables were included in the choice model without latent 
variables through the utility specification they were found to be statistically insignificant. Therefore, it has been 
argued, these variables were retained in the ICLV model but omitted from the choice model without latent 
variables. We reason that this argument is flawed. The difference in fit cannot be significant if the omitted 
variable was originally insignificant in the choice model without latent variables. Since the only difference 
between the two models is the inclusion of the variable in the ICLV model, the likelihood ratio test between the 
two models is equivalent to a t-test on the parameter associated with the omitted variable. Therefore, if the 
parameter was found to be insignificant in the choice model without latent variables, then the difference in fit as 
indicated by the likelihood ratio test should not be significant either. 

However, ignoring goodness of fit for now, how might such a situation arise at all and what is an appropriate 
response? In order to address these questions, we return to the hypothetical model of bicycle ownership. Age is 
posited to influence the decision to own a bicycle through its indirect influence on level of environmentalism 
and susceptibility to peer pressure, and through some residual direct influence on the utility of bicycle 
ownership itself. For certain values of the model parameters, it is entirely plausible that the three factors might 
negate each other and the cumulative effect of age on bicycle ownership is small (in fact, this is true for any set 
of model parameters that satisfy the relationship τ!! = β!! + γ!!α!! + γ!"α!" → 0).  

To show that this can happen, we synthesize a separate dataset with 100 observations using the ICLV model 
specification given by equations (15)-(20) and the parameter values listed in Table 1 (the observable variables 
age and gender are simulated using the same distributions as the Monte Carlo experiment in Section 3.2). We 
use this dataset to recover parameter estimates for the original ICLV model specification, the reduced form 
mixed logit model given by equations (21) and (22), and the mixed logit model given by equations (23) and (24). 
Note that each of the three parameters associated with age in the ICLV model are statistically significant at the 
5% level, but the solitary parameter associated with age in the reduced form mixed logit model has a p-value of 
0.44. However, as asserted in the previous paragraph, omitting age from the mixed logit model does not result 
in a statistically significant loss in fit. In any case, the appropriate response in such a situation is not to omit age 
from the choice model without latent variables (and risk arriving at incorrect conclusions based on an unfair  
 



12  

Figure 5: A plot of the cumulative distribution function of the difference in log-likelihood at convergence for 
datasets with 100 observations each between (a) the ICLV model given by equations (15)-(20) and the reduced 
form mixed logit (ML) model given by equations (21) and (22); and (b) the ICLV model given by equations 
(25)-(28) and the reduced form mixed logit (ML) model given by equations (21) and (22) 

 

comparison between the ICLV model and the choice model without latent variables), but to discuss possible 
hypotheses for why the associated parameters might be significant in the ICLV model but insignificant in the 
choice model without latent variables. 
3.4 Monte Carlo Experiment III 

In some situations, the analyst might find that the ICLV model actually performs worse than the reduced form 
choice model without latent variables. Different ICLV model specifications can result in the same reduced form 
choice model without latent variables. For example, in the case of the hypothetical model of bicycle ownership, 
consider an alternative ICLV model where the utility of owning a bicycle is hypothesized to be a function solely 
of a decision-maker’s attitude towards the environment, which in turn is hypothesized to be a function of both 
age and gender and is measured using the same indicator as before. The model specification is as follows: 

u!" = β!" + γ!!x!"∗ + ε!",    ε!"~GEV 0,1,0  (25) 

u!" = ε!",    ε!"~GEV 0,1,0  (26) 

x!"∗ = α!!x!" + α!"x!" + α!" + ν!",    ν!"~N 0,ϕ!! 	
   (27) 

i!" = x!"∗ + η!",    η!"~N 0,1 	
   (28) 

The reader should check that substituting equation (27) in equations (25) and (26) yields the same reduced form 
mixed logit model as that given by equations (21) and (22), even though the true underlying ICLV model 
specification is different in the two cases.  

The degrees of freedom available to the choice sub-model of the ICLV model given by equations (25)-(28) are 
two (β!" and γ!!) whereas the degrees of freedom available to the reduced form mixed logit model are three 
(τ!!, τ!" and τ!"). In other words, the choice sub-model of the ICLV model is in fact a restricted version of the 
reduced form mixed logit model, and the log-likelihood at convergence for the ICLV model can at best be equal 
to that of the mixed logit model. Figure 5 plots the cumulative distribution function of the difference in the 
value of the log-likelihood function at convergence between the ICLV model specification given by equations 
(25)-(28) and the mixed logit model given by equations (21) and (22) for the 100 datasets generated in Section 
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3.2 corresponding to 100 observations each. As a point of reference, we also plot the cumulative distribution 
function of the difference in the value of the log-likelihood function at convergence between the ICLV model 
specification given by equations (15)-(20) and the mixed logit model given by equations (21) and (22) for the 
same 100 datasets. The plot on the right shows that the ICLV model given by equations (25)-(28) fits the data 
systematically worse than the reduced form mixed logit model, and unlike the plot on the left the difference in 
log-likelihoods, though small, cannot be attributed to simulation noise alone. The difference in fit can be 
addressed by including either age or gender as a separate explanatory variable in the choice sub-model of the 
ICLV model through either equation (25) or (26), thereby increasing the degrees of freedom of the choice sub-
model of the ICLV model to three as well.  

Such an anomaly presents itself when some observable variables included in the ICLV model through the 
structural component of the latent variable sub-model are omitted from the utility specification of the choice 
sub-model, and can usually be resolved by identifying the appropriate variables and including them in the utility 
specification. Some studies have argued that a loss in fit occurs because the likelihood function of the ICLV 
model is fitting parameters both to the choice variable 𝐲𝐧 and the vector of indicators 𝐢𝐧, as opposed to just the 
choice variable 𝐲𝐧 in the case of the reduced form mixed logit model. This can be construed as an alternative 
explanation to the one provided here. However, if the choice sub-model of the ICLV model has at least as many 
degrees of freedom as the reduced form mixed logit model, then the ICLV model should fit the data as well as 
the reduced form mixed logit model. 

3.5 Summary  

In general, as long as the latent variables are represented as parametric random variables, the analyst can 
substitute the structural equation of the latent variables in the utility specification of the discrete choice sub-
model to obtain a reduced form choice model without latent variables that explains the choice data at least as 
well as the ICLV model from which it was originally derived. If the primary objective is to predict outcomes to 
the choice indicators with greater accuracy, the analyst might be better served by employing nonparametric 
representations for the latent variables, such as the discrete formulation used by LCCMs (see, for example, 
Kamakura and Russell, 1989). In some cases though, even when the latent variables are represented as 
parametric random variables, it could be argued that the structure imposed by an ICLV model may lead the 
analyst to a reduced form choice model specification that may never have been evaluated had the analyst not 
estimated the original choice model with latent variables. Consider, for example, the ICLV model of bicycle 
route choice behavior presented in Bhat et al. (2014). The discrete choice sub-model has a probit kernel, and the 
utility of a bicycle route is specified as a linear in parameters function of seventeen attributes of the route (travel 
time, terrain, car traffic, bike facilities, etc.), twelve of which are interacted with one of two latent variables 
(attitudes towards bicycling and concern for safety). Each of the latent variables themselves is specified as a 
linear in parameters function of a different set of five observable demographic variables (age, gender, etc.). The 
utility specification for the equivalent reduced form multinomial probit choice model without latent variables is 
linear in seventeen parameters identifying the main effects associated with each of the route attributes, sixty 
parameters identifying the joint effect of these attributes and different demographic characteristics, and twelve 
random parameter error components. It would be fair to say that, in the absence of latent variables to inform the 
process of model development, an analyst exploring the space of all possible model specifications may never 
have chanced upon this particular reduced form model specification. However, such examples are rare, and 
most ICLV models that have been reported in the literature have employed relatively parsimonious 
representations where the reduced form choice model is usually equally parsimonious. In these cases, it’s hard 
to make the argument that the same reduced form specification could not have been arrived at in the absence of 
latent variables, and it is important to demonstrate what benefits, if any, might be had from adopting the ICLV 
framework, recognizing that improvement in fit is not one of them. 
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4. Identification and Parameter Decomposition 

ICLV models were conceived with the intention of enriching existing representations of decision-making 
through the inclusion of latent biological, sociological and psychological constructs. Discrete choice models 
have long used sociodemographic variables as proxies for these latent behavioral constructs, but without the 
ability to say exactly what these variables might be proxies for. For example, a number of studies on travel 
mode choice behavior have frequently used sociodemographic variables related to life cycle, sex, occupation 
and age as independent explanatory variables (for an early review of the literature on travel mode choice 
behavior, the reader is referred to Barff et al., 1982). But what are these variables proxies for? Are women less 
likely to use public transport than men because of a greater concern for safety or a greater need for flexibility? 
Do younger individuals bicycle more because they have fewer responsibilities and can therefore afford to, or 
they care more about the environment than older generations? In cases where tastes vary with unobservable 
variables, or purely randomly, heterogeneity in the decision-making process has typically been captured though 
additional interactions between observable variables and the stochastic component, resulting in such popular 
model forms as the mixed logit or the multinomial probit. For example, studies on travel mode choice behavior 
have repeatedly demonstrated that the value of travel time may vary considerably within a population, even 
after accounting for systematic differences in the characteristics of the individuals that constitute the population. 
But again, the question could be asked, why do these tastes vary? Can differences in sensitivities to travel times 
and costs be ascribed to differences in attitudes towards the transportation system? Or are they reflective of 
differences in perceptions of the transportation system? Or some other entirely separate reason or combination 
of reasons? By incorporating additional data through the use of measurement indicators, the ICLV model can 
help identify additional parameters associated with the latent explanatory variables, and lend structure and 
meaning to the reasons underlying differences in behavior.  

To see that this is the case, we substitute equation (2) in equation (1) to get the following reduced form for the 
utility specification: 

𝐮𝐧 = 𝐁+ 𝚪𝚨 𝐱𝐧 + 𝛆𝐧 (29) 

A more traditional choice model without latent variables would only be able to identify the J×K  matrix 
𝚻 = 𝐁+ 𝚪𝚨. However, the ICLV model can help decompose the influence of the vector of observable 
explanatory variables 𝐱𝐧, as denoted by 𝚻, into different constituent effects, as represented by the matrices 𝐁, 𝚪 
and 𝚨. Through the measurement equation given by equation (3), these effects can be explicitly linked to 
specific behavioral constructs.  

Take, for example, the hypothetical model of bicycle ownership first presented in Section 3.1, given by 
equations (15)-(20). Equations (17) and (18) may be substituted in equations (15) and (16) to get the following 
utility specification for the reduced form model: 

u!" = β!! + γ!!α!! + γ!"α!" x!" + γ!!α!" x!" + β!" + γ!!α!" + γ!"α!"
+ γ!!ν!" + γ!"ν!" + ε!"  (30) 

u!" = ε!" (31) 

As we did in Section 3.2, define the parameters τ!!, τ!" and τ!" as follows: 

τ!! = β!! + γ!!α!! + γ!"α!" (32) 

τ!" = γ!!α!" (33) 

τ!" = β!" + γ!!α!" + γ!"α!"	
   (34) 
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, where τ!! and τ!" capture the influence of age and gender on the utility of bicycle ownership, respectively, 
and τ!" is the alternative-specific constant. Equation (32) shows how the ICLV model may be employed to 
decompose the influence of age on the utility of bicycle ownership into three constituent effects: the indirect 
influence of age through its effect on attitudes towards the environment (γ!!α!!) and susceptibility to peer 
pressure (γ!"α!"), and some unexplained residual effect (β!!). Similarly, equation (33) states that the influence 
of gender on the utility of bicycle ownership may be attributed entirely to its influence on attitudes towards the 
environment (γ!!α!"). And finally, equation (34) shows how the ICLV model may be employed to decompose 
the alternative-specific constant τ!" in the reduced form mixed logit model into three constituent effects: the 
mean population effect of attitudes towards the environment (γ!!α!" ), the mean population effect of 
susceptibility to peer pressure (γ!"α!"), and some residual that captures the mean of that which is either 
unobservable or purely random (β!"). It’s important to recognize that for the ICLV model, the two latent 
variables are no longer unobservable variables whose mean population effect would otherwise have been 
subsumed by the alternative-specific constant τ!" in the reduced form mixed logit model.  

In general, ICLV models offer greater explanatory power than choice models without latent variables by 
allowing the analyst to decompose the influence of observable variables into constituent effects, each of which 
can subsequently be attributed to some latent construct. Parameter decomposition is a powerful tool with which 
to pry open black-box representations of the decision-making process such as those usually employed by 
traditional choice models. 

5. Consistency of Parameter Estimates 

An estimator for a parameter is said to be consistent if with increasing sample size it converges to the true value 
of the parameter being estimated. In practice, the model parameters for the ICLV model are estimated from 
maximizing the following likelihood function over all decision-makers: 

L 𝐁,𝚪,𝐃,𝚿,𝐀,𝚽|𝐲𝐧, 𝐢𝐧; 𝐱𝐧 = f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐁,𝚪 f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧∗ ;𝐃,𝚿 f𝐱∗ 𝐱𝐧∗ |𝐱𝐧;𝐀,𝚽 d𝐱𝐧∗

𝐱∗

 

≈
1
T f𝐲 𝐲𝐧|𝐱𝐧, 𝐱𝐧𝐭∗ ;𝐁,𝚪 f𝐢 𝐢𝐧|𝐱𝐧, 𝐱𝐧𝐭∗ ;𝐃,𝚿

!

!!!

 

 

(35) 

Similarly, the model parameters for the reduced form choice model without latent variables are estimated from 
maximizing the following simulated likelihood function over all decision-makers: 

L 𝚻,𝚭|𝐲𝐧; 𝐱𝐧 = f𝐲 𝐲𝐧|𝐱𝐧,𝛚𝐧;𝚻 f𝛚 𝛚𝐧|𝚭 d𝛚𝐧

𝛚

 

≈
1
T f𝐲 𝐲𝐧|𝐱𝐧,𝛚𝐧𝐭;𝚻

!

!!!

 

 

(36) 

Since both sets of parameter estimates are obtained from maximizing functions that do not have a closed form 
solution that are usually simulated, the asymptotic properties of simulation-based estimators apply to both. As 
Train (2009) shows, for maximum simulated likelihood estimators, if the number of draws T rises faster than 
the square root of the sample size N, then maximum simulated likelihood is consistent. Therefore, parameter 
estimates for both the ICLV model and the reduced form choice model should be consistent. 

 



16  

Table 2: Sample mean of parameter estimates  

Parameter True 
value Model Number of Observations 

100 200 500 1000 

Age (τ!!)  0.38 
ICLV 2.19 0.40 0.38 0.38 
Mixed Logit 0.37 0.38 0.38 0.38 

Gender (τ!")  0.90 
ICLV 6.56 1.15 0.89 1.04 
Mixed Logit 0.89 0.92 0.91 0.89 

Constant (τ!") -0.15 
ICLV -1.81 -0.29 -0.12 -0.17 
Mixed Logit -0.12 -0.17 -0.13 -0.15 

Bias (𝐛)   - 
ICLV  10.01 0.86 0.42 0.34 
Mixed Logit 0.96 0.75 0.46 0.31 

  

As before, we validate the result using synthetic data. For the one hundred datasets corresponding to 100, 200, 
500 and 1000 observations, generated in Section 3.2 using the ICLV model specification given by equations 
(15)-(20), Table 2 enumerates the sample mean of the estimates for the three parameters τ!!, τ!" and τ!" as 
recovered by the ICLV model specification and the corresponding reduced form mixed logit model given by 
equations (21) and (22). Note that the estimates for the parameters τ!!, τ!" and τ!" are not directly given by the 
ICLV model but have to be calculated using equations (32)-(34) and the estimates for 𝚨, 𝐁 and 𝚪. Since the 
reduced form mixed logit model cannot estimate 𝚨, 𝐁 and 𝚪, the only way to compare estimates from the two 
models is to limit our attention to estimates for 𝐓.  

Let τ!",!"# be the estimate for τ!" recovered by model p from dataset q corresponding to number of observations 
r. Then the sample mean τ!",!" for model p and number of observations r is given by: 

τ!",!" =
1
Q τ!",!"#

!

!!!

 (37) 

, where Q = 100 is the number of datasets for any number of observations r. The sample mean of the parameter 
estimates is a measure of consistency: estimates are consistent if the sample mean of the estimates converge to 
their true values with increasing number of observations. For estimates recovered using any combination of 
dataset and model form, we use the 𝐋𝟏 distance, also known as the taxicab distance, between the estimates and 
the true values to quantify bias. Denoting bias by b, this translates into the following mathematical expression: 

b!"# = τ!",!"# − τ!"

!

!!!

!

!!!

 (38) 

Table 2 also lists the sample mean of the bias, calculated analogously from equation (37). Though the estimates 
from both model forms can be seen to converge to their true values, as shown by the decline in bias, estimates 
from the reduced form mixed logit model converge faster because it has fewer degrees of freedom. For example, 
at 100 observations the mean estimates from the ICLV model are off by several orders of magnitude. In fact, the 
ICLV model was not identified for seven of the one hundred datasets corresponding to 100 observations, 
indicating that 100 observations are likely not enough to support estimation of the ICLV model specification. In 
contrast, the reduced form mixed logit model had no trouble recovering the true parameter values and the bias is 
comparable to that for more observations. At 200, 500 and 1000 observations, the difference in bias between the 
two models is small and rapidly diminishing. This may be an artifact arising out of the particulars of the ICLV 
model specification used to generate the data. In general, estimates from both model forms will be consistent. In 
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some cases, a greater number of observations may be required to support estimation of the ICLV model, but in 
others, the additional information available to the ICLV model through the measurement indicators may 
necessitate the collection of a fewer number of total observations. 

6. Efficiency of Parameter Estimates 

It is widely believed that the additional information available to ICLV models through the incorporation of 
measurement indicators leads to an improvement in efficiency. However, evidence to support the belief is, at 
best, limited. A study on the adoption of electric cars by Glerum (2014) uses a holdout sample to compare the 
choice probabilities for the chosen alternative as predicted by an ICLV model with those from an equivalent 
choice model without latent variables. The study finds that the difference between the average values for the 5% 
and 95% confidence bounds on the predicted choice probabilities is 17.3% for the ICLV model and 18.5% for 
the choice model without latent variables, indicating that the ICLV model gives “slightly more accurate choice 
probabilities” than the choice model without latent variables. Similar arguments have been forwarded by other 
studies with respect to other model frameworks that fall within the broader family of hybrid choice models, but 
differ from the ICLV framework. For example, Ben-Akiva and Boccara (1995) and Abou-Zeid and Ben-Akiva 
(2014) have argued that the use of additional indicators to measure latent variables can improve the efficiency 
of the model parameters thus estimated. However, the example employed by both studies formulates the latent 
variable as a discrete construct, resulting in an LCCM and not an ICLV model. Abou-Zeid (2009) reports 
similar findings for a hybrid choice model where measures of happiness and wellbeing are used as additional 
indicators of the utility associated with different alternatives. In other words, the utility of different alternatives 
is used to predict outcomes to both choice and measurement indicators. In such cases, the use of measurement 
indicators is akin to the use of a greater number of observations to estimate the same model. Just as the 
efficiency of parameter estimates increases with sample size, it increases also with the use of these additional 
indicators. However, this formulation differs from the general ICLV model framework where the utility of 
different alternatives is used solely to predict outcomes to the choice indicators. With regards specifically to the 
ICLV model as defined in Section 2, Glerum (2014) is the only study that we are aware of that offers some 
evidence of an increase in efficiency, but their findings are not conclusive. 

Since a reduced form model without latent variables cannot estimate 𝚨, 𝐁 and 𝚪, as was the case in Section 5, 
we limit our attention to estimates for 𝐓. We show specifically that ICLV models may produce more efficient 
estimates for 𝐓 through an analysis of the covariance matrix of observable variables, based on the seminal work 
by Jöreskog (1978). The covariance matrix of observable variables offers insights to the structure underlying the 
observable data and provides a mechanism for identifying the unknown model parameters. Using notation not 
specific to any particular model form, the sample covariance matrix may be expressed as a function of the 
unknown model parameters, denoted 𝛉, as follows: 

σ!" = f 𝛉 	
   (39) 

, where σ!" is the i, j !" element of the sample covariance matrix 𝚺. Each element of the sample covariance 
matrix provides a unique equation in the model parameters. If a particular parameter θ can be determined from 
solving some subset of the equations given by (39), the parameter is identified. In some cases, a parameter can 
be determined in multiple ways using different sets of equations. This gives rise to overidentifying conditions 
on 𝚺 that must hold if the assumed model specification is the true data generating process. If the sample 
covariance matrix uniquely determines each element of the vector of model parameters 𝛉, then the model 
specification as a whole is identified. An analysis of the covariance matrix is useful to determine which subset 
of observable variables offers information about which subset of model parameters, and how the availability of 
more information through the inclusion of additional observable variables may lead to more efficient estimates 
for some of these parameters. In restricting our attention to the sample covariance matrix, we are implicitly 
assuming that the distribution of observable variables can be described sufficiently in terms of the first and 
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second order moments, and that additional information about the model parameters contained in higher order 
moments may be ignored, an assumption that holds true for, among other distributions, the multivariate normal 
and logistic distributions.  

For a choice model without latent variables, the observable variables comprise the vector of choice indicators 𝐲𝐧 
and the vector of explanatory variables 𝐱𝐧. The covariance matrix could be formulated directly with regards to 
these two vectors, but due to the nonlinearity of the choice sub-model, instead of working with the vector of 
choice indicators 𝐲𝐧 it is easier to work with the vector of utilities 𝐮𝐧. Since only the differences in utilities are 
observable, and not the absolute levels themselves, we introduce the J− 1 ×1  vector of the differences in 
utilities, denoted Δ𝐮𝐧, where Δ is the linear operator that transforms the J utilities into J− 1  utility differences 
taken with respect to the J!" alternative. ∆ is a J− 1 ×J  matrix that consists of a J− 1 × J− 1  identity 
matrix with a column vector of −1’s appended as the J!" column. Though ∆ performs the differences with 
respect to the last alternative for each choice situation, our analysis is indifferent to whichever alternative is 
used as the base. Therefore, for a choice model without latent variables, the observable variables may be 
redefined as the vector of utility differences Δ𝐮𝐧 and the vector of explanatory variables 𝐱𝐧. For an ICLV model, 
the observable variables comprise the additional vector of measurement indicators 𝐢𝐧. We show here that the 
inclusion of the measurement indicators in the ICLV model offers additional information about the reduced 
form model parameters 𝐓, information that would not be available to a choice model without latent variables, 
and this additional information can produce potentially more efficient parameter estimates.  

Under the assumptions outlined in Section 2 for the general ICLV model framework, the variance of the vector 
of utility differences Δ𝐮𝐧, and the covariance between the vector of utility differences Δ𝐮𝐧 and the vector of 
explanatory variables 𝐱𝐧, can be parameterized as follows: 

var Δ𝐮𝐧 = Δ 𝚩+ 𝚪𝚨 E 𝐱𝐧𝐱𝐧! 𝚩+ 𝚪𝚨 !Δ! + Δ𝚪𝚽𝚪!Δ! + kΔΔ! 

= Δ𝚻E 𝐱𝐧𝐱𝐧! 𝚻!Δ! + Δ𝚭Δ! + kΔΔ! (40) 

cov Δ𝐮𝐧, 𝐱𝐧 = Δ 𝚩+ 𝚪𝚨 E 𝐱𝐧𝐱𝐧! = Δ𝚻E 𝐱𝐧𝐱𝐧! 	
   (41) 

, where k is a constant, equal to the variance of a standard Gumbel distributed random variable. For a choice 
model without latent variables, equations (40) and (41) offer the only information available to identify the 
matrices of reduced form model parameters 𝚻 and 𝚭. For an ICLV model, the analyst has access to additional 
information through the inclusion of the vector of measurement indicators 𝐢𝐧: 

var 𝐢𝐧 = 𝐃𝚨E 𝐱𝐧𝐱𝐧! 𝚨!𝐃! + 𝐃𝚽𝐃! +𝚿 (42) 

cov 𝐢𝐧, 𝐱𝐧 = 𝐃𝚨E 𝐱𝐧𝐱𝐧!  (43) 

cov Δ𝐮𝐧, 𝐢𝐧 = Δ 𝚩+ 𝚪𝚨 E 𝐱𝐧𝐱𝐧! 𝚨!𝐃! + Δ𝚪𝚽𝐃!	
   (44) 

The reader’s attention is directed specifically towards equation (44), which indicates that the covariance 
between the measurement indicators and the differences in utilities (as measured indirectly through the choice 
indicators) can be expressed as a direct function of, among other variables, the matrix of reduced form model 
parameters 𝚻 = 𝚩+ 𝚪𝚨. In other words, the inclusion of the measurement indicators 𝐢𝐧 in the ICLV model may 
provide potentially additional information about 𝚻. Depending on the specification for each of the unknown 
model parameters, and the resulting form of equations (40)-(44), in some cases equation (44) may be used to 
identify one or more additional model parameters, and in others it may be used to impose overidentifying 
conditions on the sample covariance matrix. If the former is true, estimates for 𝚻 from the ICLV model and the 
reduced form choice model without latent variables will be equally efficient. But if the latter is true, estimates 
from the ICLV model may be more efficient. 
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Table 3: Sample standard error of parameter estimates for the 
ICLV model given by equations (15)-(20) and the reduced form 
mixed logit model given by equations (21)-(22) 

Parameter Model and 
test statistic 

Number of Observations 
100 200 500 1000 

Age (τ!!) 
ICLV 7.67 0.17 0.09 0.06 
Mixed Logit 0.16 0.12 0.08 0.06 
F-stat ∞ 1.93 1.05 1.17 

Gender (τ!") 
ICLV 21.67 0.52 0.25 0.16 
Mixed Logit 0.55 0.41 0.27 0.17 
F-stat ∞ 1.58 0.74 0.85 

Constant (τ!") 
ICLV 10.37 0.45 0.25 0.16 
Mixed Logit 0.51 0.39 0.25 0.16 
F-stat ∞ 1.31 0.89 0.96 

 

Consider, for the sake of illustration, the two ICLV model specifications given by equations (15)-(20) and 
equations (25)-(28). For the latter model specification, the reader should verify that 𝚨 can be completely 
identified from equation (43), 𝚩 and 𝚪 can be completely identified from equation (41), 𝚽 can be completely 
identified by equation (42), 𝐃 and 𝚿 are constant matrices that don’t need to be estimated, equation (40) helps 
to set the scale for the utility differences, and equation (44) serves to impose overidentifying restrictions on the 
sample covariance matrix. For the former model specification, the reader should similarly verify that 𝚨 can be 
completely identified from equation (43), 𝚽 can be completely identified by equation (42), 𝐃 and 𝚿 are 
constant matrices that don’t need to be estimated, and equation (40) helps to set the scale for the utility 
differences. However, equation (41) alone is no longer sufficient to identify 𝚩 and 𝚪, and equation (44) is 
needed as well to ensure that the model specification can be identified. As a result, estimates from the ICLV 
model given by equations (15)-(20) and the corresponding reduced form choice model without latent variables 
given by equations (21)-(22) should be equally efficient. But estimates from the ICLV model given by 
equations (25)-(28) should be more efficient than the corresponding reduced form choice model without latent 
variables given by equations (21)-(22). 

As before, we validate the result using Monte Carlo experiments. For the one hundred datasets corresponding to 
100, 200, 500 and 1000 observations, generated in Section 3.2 using the ICLV model specification given by 
equations (15)-(20), Table 3 enumerates the sample standard error of the estimates for the three parameters τ!!, 
τ!"  and τ!"  as recovered indirectly by the ICLV model specification, using equations (32)-(34) and the 
estimates for 𝚨, 𝐁 and 𝚪, and directly by the corresponding reduced form mixed logit model given by equations 
(21) and (22). Given that τ!",!"# is the estimate for τ!" recovered by model p from dataset q corresponding to 
observations r, the sample standard error SE τ!",!"  for model p and observations r may be calculated as: 

SE τ!",!" =
1

Q− 1 τ!",!"# − τ!!,!"
!

!

!!!

 (45) 

The sample standard error of the parameter estimates is a measure of efficiency: estimates with lower standard 
errors are more efficient than estimates with higher standard errors. To facilitate a comparison between the 
sample standard errors for the two models, we calculate the ratio of the sample variances. Given that there are 
100 datasets each corresponding to either model, the ratio has an F distribution with both degrees of freedom  
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Table 4: Sample standard error of parameter estimates for the 
ICLV model given by equations (25)-(28) and the reduced form 
mixed logit model given by equations (21)-(22) 

Parameter Model and 
test statistic 

Number of Observations 
100 200 500 1000 

Age (τ!!) 
ICLV 0.16 0.09 0.06 0.04 
Mixed Logit 0.21 0.13 0.08 0.06 
F-stat 0.56 0.52 0.56 0.48 

Gender (τ!") 
ICLV 0.41 0.28 0.20 0.13 
Mixed Logit 0.61 0.45 0.29 0.19 
F-stat 0.46 0.38 0.46 0.52 

Constant (τ!") 
ICLV 0.52 0.35 0.22 0.15 
Mixed Logit 0.63 0.41 0.27 0.20 
F-stat 0.68 0.70 0.69 0.61 

 

equal to 99. The null hypothesis that the sample variances for the two models are equal can be rejected in favor 
of the alternative hypothesis that the sample variances are different with a confidence of 95% when the test 
statistic is less than 0.67 or greater than 1.49. For 100 and 200 observations, the ICLV model has higher sample 
standard errors, indicating that a greater number of observations is needed to support estimation. However, as 
the number of observations grows, the difference in sample standard errors decreases, and for 500 and 1000 
observations, the difference is statistically insignificant, indicating that estimates from the two models are 
asymptotically equally efficient.  

Contrast these results with those for the analogous datasets generated using the ICLV model specification given 
by equations (25)-(28), shown in Table 4. Given that the ratio of the sample variances has an F distribution with 
both degrees of freedom equal to 99, the null hypothesis that the sample variances for the two models are equal 
can be rejected in favor of the alternative hypothesis that the sample variance for the ICLV model is less than 
the sample variance for the mixed logit model with a confidence of 95% when the test statistic is less than 0.72. 
As is apparent from the table, the sample standard errors for the ICLV model are smaller than those for the 
reduced form mixed logit model, and in all cases, the difference is statistically significant. Therefore, it is fair to 
conclude that estimates from the ICLV model will be at least as efficient as estimates from the reduced form 
choice model without latent variables, and in some cases, depending upon the model structure, they might 
actually be more efficient. 

7. Conclusions 

For most part of the last century, discrete choice models have based their representation of the decision-making 
process upon the neoclassical abstraction of decision-makers as rational self-interested actors engaged in a 
continuous process of evaluating the costs and benefits associated with any decision in the marketplace as they 
strive to maximize their personal wellbeing. Early applications of the framework were limited by their emphasis 
on the direct impact of observable variables on the decision-making process and their concurrent indifference to 
the influence exerted by latent variables underlying the process. As a matter of convenience, the task of 
breaking open these black-box representations was left to studies in the behavioral and social sciences. Much 
progress has been made in these fields over the last several decades. Detailed survey instruments, such as 
Likert-scale items asking respondents to rate their level of agreement or disagreement on a symmetric agree-
disagree scale, have been developed to measure the many different latent constructs postulated to motivate 
observable behavior. Rich theories of cognitive decision-making have been proposed and tested across a wide 
spectrum of disciplines that include travel demand analysis, healthcare, education, marketing sciences, etc. (see, 
for example, Triandis, 1977; Homer and Kahle, 1988; and Azjen, 1991). However, the reliance of most of these 
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studies on some variation of the Structural Equations Modeling (SEM) approach precluded integration with 
studies in econometrics and related disciplines for a long time. Though SEM is particularly suited to the 
estimation of models with causal relationships between multiple observable and latent variables, it differs 
substantially from the neoclassical framework of random utility maximization used by discrete choice models. 
The ICLV model reconciles these methodological differences by combining the factor analytic approach used 
by behavioral and social scientists with discrete choice methods popularly employed by econometricians. By 
allowing for the explicit incorporation of psychometric data and latent constructs within existing representations 
of the decision-making process, the ICLV model frees the analyst from restrictions arising out of simplifying 
assumptions made by earlier models. 

Notwithstanding these benefits, the practical value of the ICLV model has remained unclear. This study was 
born from the discovery that any ICLV model can be reduced to a choice model without latent variables that fits 
the data at least as well as the original ICLV model from which it was obtained. The failure of studies in the 
past to recognize this retrospectively simple truth raised concern over the other benefits that were claimed with 
regards to the use of ICLV models. With the objective of addressing some of these concerns, this study 
undertook a measured reexamination of the statistical properties of ICLV models vis-à-vis more traditional 
choice models without latent variables. In terms of both goodness of fit and the consistency of parameter 
estimates, we found that choice models without latent variables are no worse than ICLV models. However, the 
ICLV model allows for the identification of structural relationships between observable variables that could not 
be identified by a choice model without latent variables, and parameter estimates from the ICLV model might 
potentially be more efficient than equivalent estimates from a comparable choice model without latent variables. 

The focus of this paper was on the statistical benefits of ICLV models. Much work still remains to be done to 
establish the policy benefits of the framework (cf. Chorus and Kroesen, 2014). Unfortunately, studies in the past 
that have employed ICLV models have failed to conclusively demonstrate what tangible gains might be had 
from adopting the framework. Most have tended to simplify significantly the cognitive theories motivating the 
use of ICLV models, and much of the behavioral richness captured originally in these theories through the 
complex interplay between different latent psychological constructs has often been lost as a consequence of 
these simplifications. While such work is appropriate and valuable as the methods are being developed, the 
ICLV methodology is now mature enough that the discussion needs to be redirected to emphasize added value. 
If an improvement in efficiency, and corresponding improvements in the precision of policy outputs such as 
willingness to pay measures and demand forecasts, are the only policy benefits over choice models without 
latent variables, then estimating an ICLV model hardly seems worth the effort. Studies need to show either that 
the structure imposed by the ICLV model results in a reduced form choice model specification that may not 
have been considered in the absence of latent variables to guide the process of model development, or that the 
greater insights into the decision-making process offered by the ICLV model can be used to inform policy and 
generate forecasts in unobvious ways that would not be possible using choice models without latent variables. If 
used appropriately, the ICLV model could prove to be a very valuable tool to have in an ever expanding toolbox 
of models. But as analysts who develop statistical models of disaggregate behavior, we need to be more 
thoughtful with regards to the design of the model framework and more creative in illustrating its value to 
practitioners and policy-makers.  
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