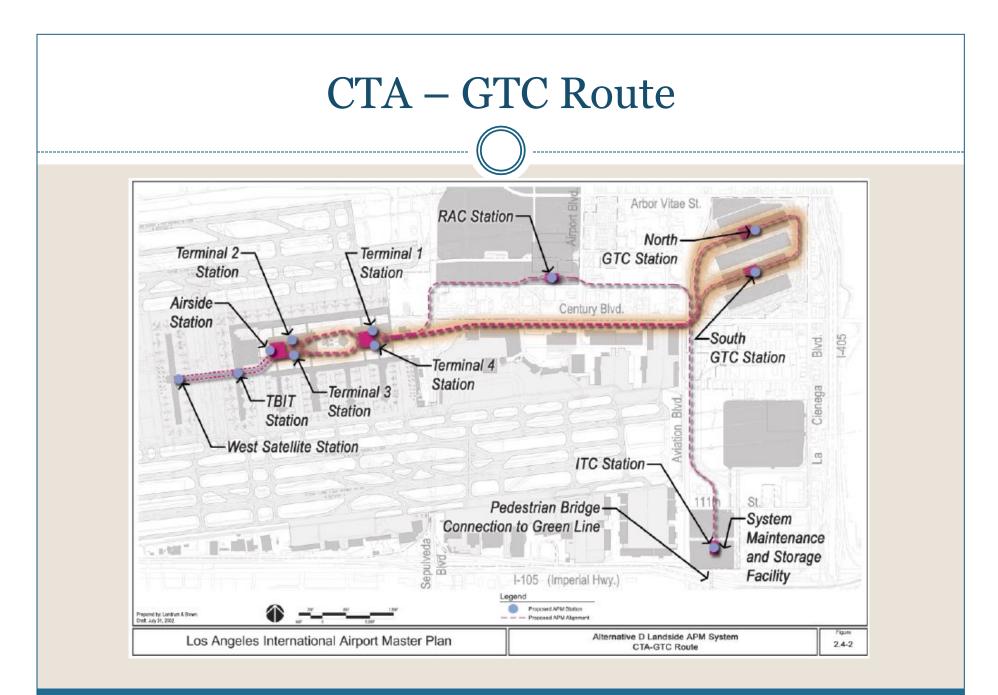
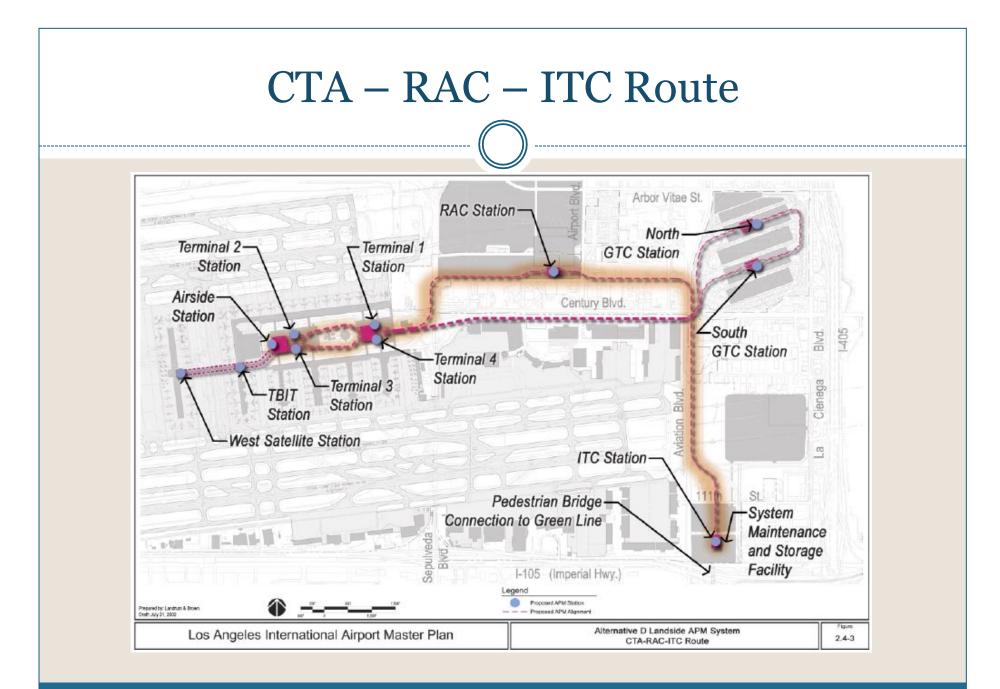
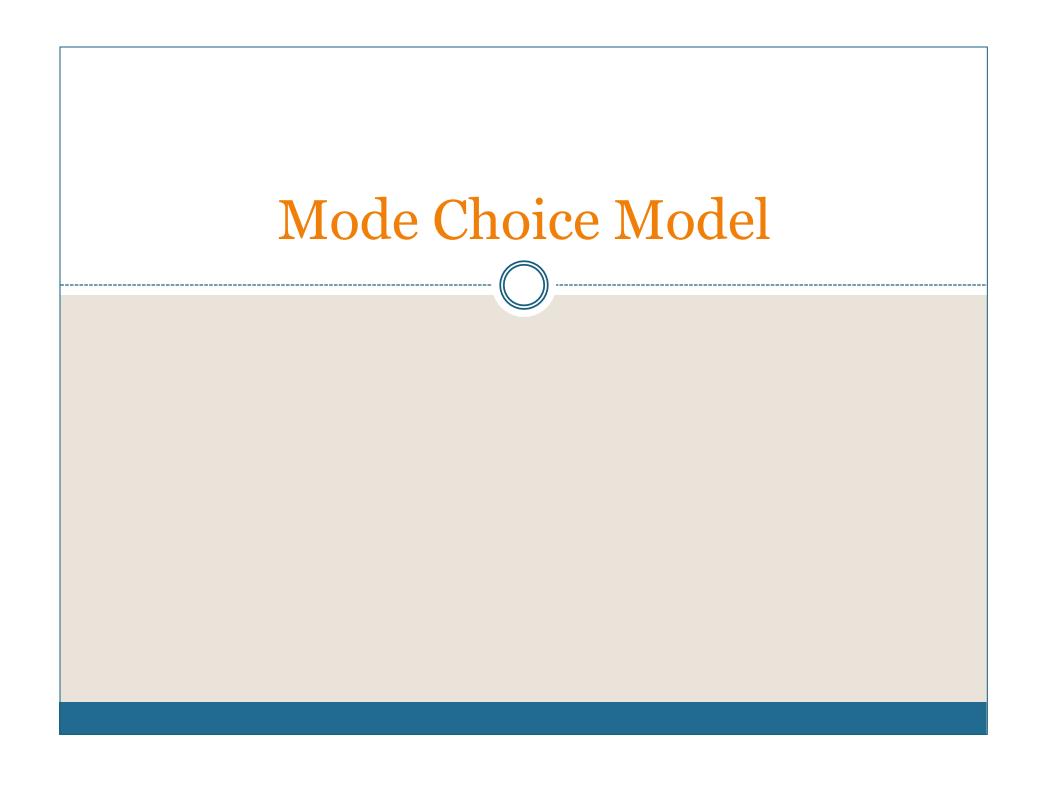

Choosing An Automated People Mover

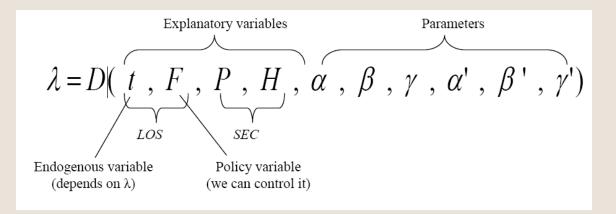

CHRIS BOSWELL WILLIAM CHOW ROSA DONALDSON THOMAS WONG MADELINE ZISER

Introduction


- Basics of the LAX APM system
- Why choose an APM over another system?
 Mode Choice Model
- Flaws and Improvements
- Hong Kong International Airport Case Study
 Factoring in passenger satisfaction
- How does the HKIA case study affect LAX?


http://www.ourlax.org/docs/final_mp/013_MainDocument_Ch_2.04.pdf

http://www.ourlax.org/docs/final_mp/013_MainDocument_Ch_2.04.pdf



http://www.ourlax.org/docs/final_mp/013_MainDocument_Ch_2.04.pdf

How do you predict mode choice?

- Use of regression models are most common
- A regression model is a way to model the relationship between a dependent variable and explanatory variables

http://www.answers.com/topic/regression-analysis

How do you make a regression model?

- Categorize Mode Choice Options Public Transit, Taxi, Private Vehicle, Other
- Focus on Specific Attributes of Users Income, Business vs. Vacation Travel
- Survey Users to Obtain Empirical Data
- Run Regression to Calculate Coefficients

Types of Regression: Probit

• Pros

Outcome don't need to be bipary

Good for moderate sized data sets

Cons

▪ May take longer to reach convergence

× Assumes underlying distribution is normal

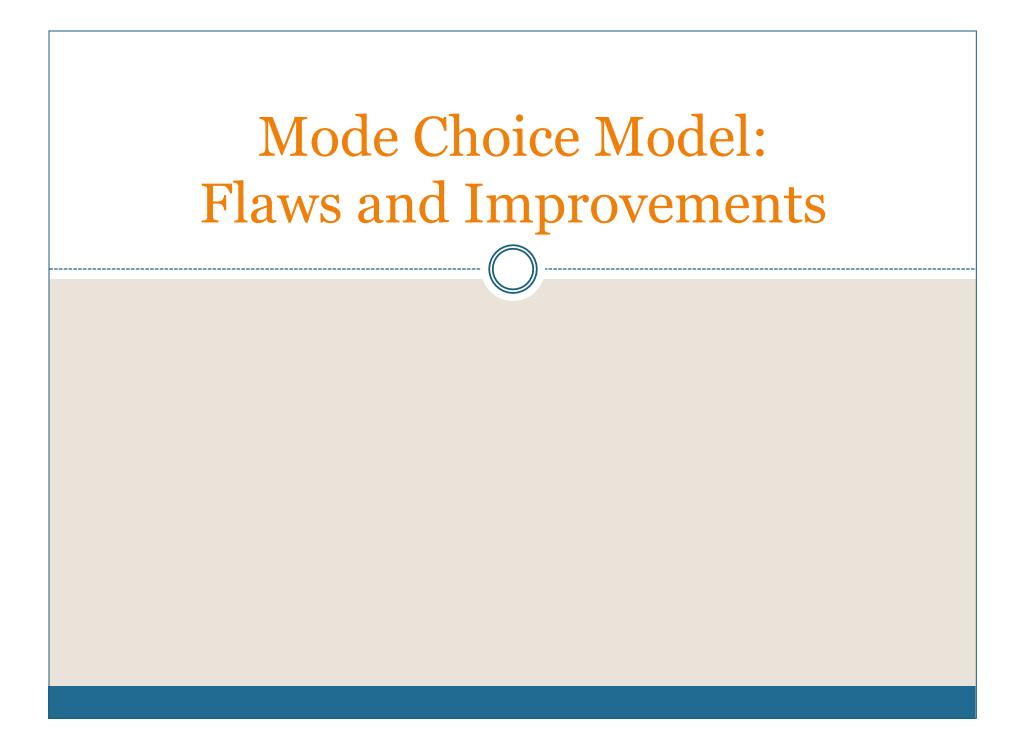
Types of Regression: Logit

• Pros

▼ Distribution doesn't need to be normal

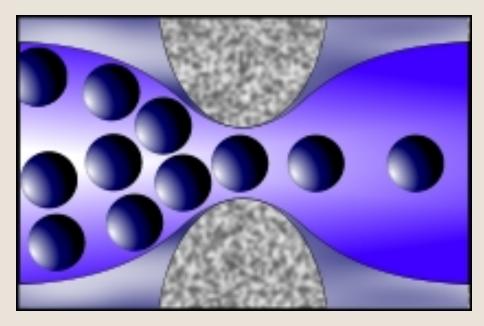
× Reach convergence quickly

• Cons


- Tends to overestimate Beta coefficients in small to medium sized data sets
- A minimum of ten events per independent variable is recommended.

Issues with Linear Regression Models

- Dependent on parameters chosen
- Can get a "good fit" by adding excess parameters
- Assumes linear trend between variables
- Can be affected by outliers (Influential Observations)


http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

http://www.ce.berkeley.edu/~daganzo/Public/MultinomialProbit_Daganzo.pdf

Bottleneck Idealization

Modeled – Free flow before, congested speed after

Reality – Congested before, free flow after

Dynamic Representation

Model does not account for user feedback

Experience on one day may affect later travel choices

Trip Assignment Assumptions Model assumes all trips must take place regardless of road capacity Unreal representation of network

Acknowledge User Preferences

Understand how user preferences affect travel choices

Challenging to quantify

Satisfaction in the Modal Split

HONG KONG INTERNATIONAL CASE STUDY

Setup

- Initial Modal Split Survey conducted in 1999
- Two more surveys conducted in 2004-2005
- Modal split performed for 5 forms of arrival
 - Airport Express
 - o Bus
 - o Taxi
 - Private car
 - Hotel shuttle/tour bus
- Wanted to collect information about origin, travel cost, party size, number of luggage
 Also include satisfaction of each service mentioned

Survey Results

- 77% used a single mode, others used combination of modes
- Satisfaction results
 - High reliability, travel time because 90% did not see any traffic
 - Lowest ratings came from waiting time for buses, travel cost for other modes
 - Best relative service came from taxis
- How to accurately predict results?

MIMIC

- Special case of the general structural equation models, only one variable:
 - o influenced by multiple factors
 - o shown in more than one indicator
- Factors in Satisfaction: travel time, gender, age, education level
- Indicators: Passenger satisfaction levels on the 5 modes of arrival

MIMIC Model

Parameter estimates for structural equations of MIMIC models.

	Airport Express	Bus	Taxi and Private car	Courtesy vehicle
$X_1 \text{ Time} \\ X_2 \text{ Male} \\ X_3 \text{ Age } 36-55 \\ X_4 \text{ Education}$	$\begin{array}{c} -0.0070 \ (-2.73) \\ 0.0520 \ (0.56) \\ 0.0025 \ (1.03) \\ 0.1800 \ (2.69) \end{array}$	$\begin{array}{r} -0.0045 \ (-3.84) \\ 0.0093 \ (1.52) \\ -0.0180 \ (-1.94) \\ -0.0200 \ (-1.54) \end{array}$	$\begin{array}{c} -0.0054 \ (-2.53) \\ 0.0840 \ (1.83) \\ 0.0680 \ (1.46) \\ 0.0580 \ (1.81) \end{array}$	$\begin{array}{c} -0.0045 \ (-2.53) \\ 0.0730 \ (1.36) \\ 0.0240 \ (1.63) \\ 0.0190 \ (1.73) \end{array}$
Goodness of fit statistics χ^2 -value (degrees of freedom)	147.69 (21)	75.30 (21)	42.60 (21)	22.51 (21)
Root mean square error of approximation (RMSEA)	0.12	0.07	0.04	0.03
Standardised root mean square residual (RMR)	0.08	0.05	0.04	0.06
Goodness of fit index (GFI)	0.93	0.97	0.98	0.96
Adjusted Goodness of Fit Index (AGFI)	0.85	0.93	0.96	0.91

Note: *t*-values in parentheses.

Discrete Choice Factors

	Model with Latent Variable	Model without Latent Variable
Satisfaction	1.9403 (3.971)	_
Cost	-0.0866 (-10.136)	-0.0858(-10.088)
Time	-0.0094(-2.281)	-0.0193 (-5.857)
Time (Business)	-0.0197(-4.222)	-0.0229(-4.956)
Transfer	-0.3326(-2.349)	-0.3148(-2.257)
Party size (specific to AE)	-0.0388(-1.246)	-0.0448(-1.419)
Baggage (specific to AE)	-0.1806(-1.454)	-0.1966(-1.583)
Party size (specific to bus)	-0.0817(-2.621)	-0.0819(-2.690)
Baggage (specific to bus)	-0.1637(-1.363)	-0.1439(-1.205)
Long-haul (specific to bus)	-0.5929 (-3.147)	-0.6051(-3.231)
Age 25 (specific to bus)	0.2800 (1.494)	0.4572 (2.526)
HK (specific to AE and bus)	0.8381 (4.305)	0.8128 (4.184)
Age 65 (specific to taxi, private car and courtesy vehicle)	0.8959 (1.975)	0.8212 (1.812)
Alternative specific constant for AE	0.2504 (0.752)	1.0822 (4.209)
Alternative specific constant for bus	1.4628 (3.225)	1.1824 (4.399)
Alternative specific constant for taxi	0.6087 (2.824)	0.8465 (4.077)
Alternative specific constant for private car	0.9929 (3.704)	1.2301 (4.702)
Summary statistics		
Log-likelihood at zero	-1639.7625	-1639.7625
Log-likelihood at convergence	-917.9332	-926.0474
Likelihood ratio index	0.4402	0.4353

Discrete Choice Analysis

- The travel time becomes prime concern for air passenger mode choices
 - Can perform a sensitivity analysis to see if effective pricing can be employed
- Other factors would then be included for further study to make the model more accurate
 - Large luggage sizes, safety, relaxation

Applications to LAX

- Changing the flow of people from direct access towards the people mover will alter the satisfaction of each mode choice
- Modal split should be employed with this new factor to determine how/where trains should be run

General Applicability to Airport Planning

- Mode Choice Model Applications:
 - Off-Site Facility Planning
 - Passenger Flow Patterns

• Applicability:

- Facility Capacity
- Transportation System Capacity
- Traffic Flow and Access Patterns
- o Isolates Factors Influencing Mode Choice

APM System Decision at LAX

- Mode Choice Model
 - Model Predicted
 - ▼ Traffic Flow Patterns
 - ▼ Passenger Flow Patterns Facility Capacities
 - Prompted Off-Site Facility Decision
 - Necessitated Intra-Airport Transit System

Transferability and Limitations

- Application to Intra-Airport Transportation Options
 - Necessary Interpolation of Mode Choice Model Information to Intra-Airport Transportation System

Limitations

- Incorporation of Passenger Satisfaction
- Failure to Include Missing Design Parameters

Final Conclusions

- Mode Choice Model
 - Model with Limitations and Opportunities for Improvement
 - Key Component of Airport Transportation Planning
 - Secondary Applicability to Intra-Airport System Planning